CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On adaptive finite element methods for Fredholm integral equations of the second kind

Mohammad Asadzadeh (Institutionen för matematik) ; Kenneth Eriksson (Institutionen för matematik)
SIAM Journal on Numerical Analysis Vol. 31 (1994), 3, p. 831-855.
[Artikel, refereegranskad vetenskaplig]

A posteriors and a priori error estimates are derived for a finite element discretization of a Fredholm integral equation of the second kind. A reliable and efficient adaptive algorithm is then designed for a specific computational goal with applications to potential problems. The reliability of the algorithm is guaranteed by the a posteriors error estimate and the efficiency follows from the a priori error estimate, which shows that the a posteriors error bound is sharp

Nyckelord: Fredholm integral equation, potential problems, adaptive finite element method, a posteriors and a priori error estimates



Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103212

 

Institutioner (Chalmers)

Institutionen för matematik (1987-2001)

Ämnesområden

Tillämpad matematik

Chalmers infrastruktur