CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On convergence of FEM for the Fokker-Planck equation

Mohammad Asadzadeh (Institutionen för matematik)
Proceedings of 20th International Symposium on Rarefied Gas Dynamics, ed by C. Shen, Peking University Press, Beijing, August 19-23 (1996), p. 309-314. (1997)
[Konferensbidrag, refereegranskat]

We give a priori error estimates in certain weighted $L_2$-norms for some finite element methods for steady state, energy dependent, Fermi and Fokker-Planck equations in two space dimensions, with the error bounds of order ${\Cal O}(h^{k+1/2})$, for the weighted current function $J\in H^{k+1}(\Omega)$ with $h$ being the quasi-uniform mesh size in triangulation of the three dimensional phase-space domain $\Omega =I_x\times I_y\times I_z$, where $z$ corresponding to the velocity variable.

Nyckelord: A priori error estimates, Pencil beams, Fermi equation, Fokker-Planck equation, Weighted norms

Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103210


Institutioner (Chalmers)

Institutionen för matematik (1987-2001)


Tillämpad matematik

Chalmers infrastruktur