CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A finite element method for the neutron transport equation in an infinite cylindrical domain

Mohammad Asadzadeh (Institutionen för matematik)
SIAM Journal on Numerical Analysis Vol. 35 (1998), 4, p. 1299-1314.
[Artikel, refereegranskad vetenskaplig]

We study the spatial discretization, in a fully discrete scheme, for the numerical solution of a model problem for the neutron transport equation in an infinite cylindrical domain. Based on using an interpolation technique in the discontinuous Galerkin finite element procedure, we derive an almost optimal error estimate for the scalar flux in the L2-norm. Combining a duality argument applied to the above result together with the previous semidiscrete error estimates for the velocity discretizations, we also obtain globally optimal error bounds for the critical eigenvalues.

Nyckelord: neutron transport equation, spatial discretization, finite element, convergence rate, Besov spaces, interpolation spaces, scalar flux, duality algorithm, critical eigenvalue

Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103208


Institutioner (Chalmers)

Institutionen för matematik (1987-2001)


Tillämpad matematik

Chalmers infrastruktur