CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A posteriori error estimates for the Fokker-Planck and Fermi pencil beam equations.

Mohammad Asadzadeh (Institutionen för matematik)
Mathematical Models and Methods in Applied Science Vol. 10 (2000), p. 737-769.
[Artikel, refereegranskad vetenskaplig]

We prove a posteriori error estimates for a finite element method for steady-state, energy dependent, Fokker-Planck and Fermi pencil beam equations in two space dimensions and with a {\sl forward-peaked scattering} (i.e., with velocities varying within the right unit semi-circle). Our estimates are based on a {\sl transversal symmetry assumption}, together with a strong stability estimate for an associated dual problem combined with the Galerkin orthogonality of the finite element method.

Nyckelord: Fermi, Fokker-Planck, Pencil beam, strong stability, dual % problem, a posteriori error estimates, interpolation estimates, Galerkin orthogonality, adaptive finite element

Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103199


Institutioner (Chalmers)

Institutionen för matematik (1987-2001)


Tillämpad matematik

Chalmers infrastruktur