CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Convergence of a discontinuous Galerkin scheme for the neutron transport.

Mohammad Asadzadeh (Institutionen för matematik)
Transport Theory and Statistical Physics, p. 357-383. (2001)
[Artikel, refereegranskad vetenskaplig]

We study the spatial discretization for the numerical solution of a model problem for the neutron transport equation in an infinite cylindrical domain. Based on using an interpolation technique in the discontinuous Galerkin finite element procedure, and regularizing properties of the solution operator, we derive an {\sl optimal} error estimate in $L_2-$norm for the scalar flux. This result, combined with a duality argument and previously known semidiscrete error estimates for the velocity discretizations, gives {\sl globally optimal} error bounds for the critical eigenvalue.

Nyckelord: Discontinuous Galerkin, Neutron transport, Spatial discretization, Superconvergence

Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103195


Institutioner (Chalmers)

Institutionen för matematik (1987-2001)


Tillämpad matematik

Chalmers infrastruktur