CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On Fully Discrete Schemes for the Fermi Pencil-Beam Equations.

Mohammad Asadzadeh (Institutionen för matematik) ; Alexandros Sopasakis (Institutionen för matematik)
Computer Methods for Applied Mechanics and Engineering (0045-7825). Vol. 191 (2002), 41-42, p. 4641-4659.
[Artikel, refereegranskad vetenskaplig]

We consider standard Galerkin and streamline diffusion finite element methods in the two dimensional, bounded transversal domain combined with backward Euler, Crank-Nicolson and discontinuous Galerkin methods in the penetration variable. Assuming smooth solutions in the Sobolev space $H^{k+1}$ of functions with their partial derivatives up to order $k+1$ in $L_2$, we derive optimal, a priori, semi-discrete methods of order $O(h^k)$ and $O(h^{k+1/2})$, respectively. Numerical implementations are presented

Nyckelord: Fermi equation, Pencil beam, Standard Galerkin, Semi-streamline-diffusion, Fully discrete scheme, Convergence rates

Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103190


Institutioner (Chalmers)

Institutionen för matematik (2002-2004)


Tillämpad matematik

Chalmers infrastruktur