CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On the stability of characteristic schemes for the Fermi equation

Mohammad Asadzadeh (Institutionen för matematik)
Applied and Computational Mathematics Vol. 1 (2002), p. 158-174.
[Artikel, refereegranskad vetenskaplig]

We study characteristic schemes for a model problem for the Fermi pencil beam equation. The objective is twofold: (i) To design efficient and accurate numerical schemes based on the principle of solving a particle transport problem, exactly, on each collision free spatial segment combined with a projection on each collision site, from a pre collision angle and energy coordinates (AE) to a post collision AE coordinates. (ii) To prove stability and derive a posteriori error estimates in $L_2$ and the maximum norms.

Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103189


Institutioner (Chalmers)

Institutionen för matematik (2002-2004)


Tillämpad matematik

Chalmers infrastruktur