CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On convergence of a h-p Streamline Diffusion and Discontinuous Galerkin Methods for the Vlasov-Poisson-Fokker-Planck System

Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik)
26th International Symposium on Rarefied Gas Dynamics, RGD26; Kyoto; Japan; 20 July 2008 through 25 July 2008 (0094243X). Vol. 1084 (2009), p. 99-104.
[Konferensbidrag, refereegranskat]

In this paper we investigate the basic ingredients for global superconvergence strategy of streamline diffusion (SD) and discontinuous Galerkin (DG) finite element approximations in $H^{1}$ and $W^{1,\infty}$-norms (see \cite{Adams:75}) for the solution of the Vlasov--Poisson--Fokker--Planck system. This study is an extension of the results in \cite{Asadzadeh:90}-\cite{Asadzadeh.Sopasakis:2007}, to finite element schemes including discretizations of the Poisson term, where we also introduce results of an extension of the $h$-versions of SD and DG to the corresponding $hp$-versions. Optimal convergence results presented in the paper relay on the estimates for the regularized Green's functions with memory terms where some interpolation postprocessing techniques play important roles, see \cite{Baouendi.Grisvard:86}.

Nyckelord: Vlasov-Poisson-Fokker-Planck system, streamline diffusion method, discontinuous Galerkin method.



Denna post skapades 2009-12-09. Senast ändrad 2016-07-13.
CPL Pubid: 103187

 

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Tillämpad matematik

Chalmers infrastruktur