CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dynamics and temperature-dependence of 1.3-μm GaInNAs double quantum-well lasers

Yong Qiang Wei (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Johan S. Gustavsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Mahdad Sadeghi (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; S. Wang ; A. Larsson
IEEE Journal of Quantum Electronics (00189197 ). Vol. 42 (2006), 12, p. 1274-1280.
[Artikel, refereegranskad vetenskaplig]

We have measured the small-signal modulation response of 1.3-μm ridge waveguide GaInNAs double quantum-well lasers over a wide range of temperatures (25 μC-110 °C) and analyzed the temperature dependence of the modulation bandwidth and the various bandwidth limiting effects. The lasers have low threshold currents and high differential efficiencies with small temperature dependencies. A short-cavity (350 μm) laser has a modulation bandwidth as high as 17 GHz at room temperature, reducing to 4 GHz at 110 °C, while a laser with a longer cavity (580 μm) maintains a bandwidth of 8.6 GHz at 110 μC. We find that at all ambient temperatures the maximum bandwidth is limited by thermal effects as the temperature increases with current due to self-heating. The reduction and subsequent saturation of the resonance frequency with increasing current is due to a reduction of the differential gain and an increase of the threshold current with increasing temperature. We find large values for the differential gain and the gain compression factor. The differential gain decreases linearly with temperature while there is only a weak temperature dependence of the gain compression. At the highest temperature we also find evidence for transport effects that increase the damping rate and reduce the intrinsic bandwidth.

Denna post skapades 2009-12-08. Senast ändrad 2013-08-23.
CPL Pubid: 103069


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik


Elektroteknik och elektronik

Chalmers infrastruktur