CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Segal–Bargmann and Weyl transforms on compact Lie groups. (With Joachim Hilgert)

J. Hilgert ; Genkai Zhang (Institutionen för matematiska vetenskaper, matematik)
Monatshefte für Mathematik (0026-9255 ). Vol. 158 (2009), 3, p. 285-305.
[Artikel, refereegranskad vetenskaplig]

We present an elementary derivation of the reproducing kernel for invariant Fock spaces associated with compact Lie groups which, as Ólafsson and Ørsted showed in (Lie Theory and its Applicaitons in Physics. World Scientific, 1996), yields a simple proof of the unitarity of Hall's Segal-Bargmann transform for compact Lie groups K. Further, we prove certain Hermite and character expansions for the heat and reproducing kernels on K and Kℂ. Finally, we introduce a Toeplitz (or Wick) calculus as an attempt to have a quantization of the functions on Kℂ as operators on the Hilbert space L2(K).

Nyckelord: Compact lie group; Hermite functions; Reproducing kernel; Segal-Bargmann transform; Toeplitz operator; Weyl transform

Denna post skapades 2009-12-04. Senast ändrad 2016-07-12.
CPL Pubid: 102830


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur