CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On the robustness of global optima and stationary solutions to stochastic mathematical programs with equilibrium constraints, Part 1: Theory

Michael Patriksson (Institutionen för matematiska vetenskaper, matematik) ; Christoffer Cromvik (Institutionen för matematiska vetenskaper, matematik)
Journal of Optimization Theory and Applications (1573-2878). Vol. 144 (2010), 3, p. 461-478.
[Artikel, refereegranskad vetenskaplig]

We consider a stochastic mathematical program with equilibrium constraints (SMPEC) and show that, under certain assumptions, global optima and stationary solutions are robust with respect to changes in the underlying probability distribution. In particular, the discretization scheme sample average approximation (SAA), which is convergent for both global optima and stationary solutions, can be combined with the robustness results to motivate the use of SMPECs in practice. We then study two new and natural extensions of the SMPEC model. First, we establish the robustness of global optima and stationary solutions to an SMPEC model where the upper-level objective is the risk measure known as conditional value-at-risk (CVaR). Second, we analyze a multiobjective SMPEC model, establishing the robustness of weakly Pareto optimal and weakly Pareto stationary solutions. In the accompanying paper (Cromvik and Patriksson, Part 2, J. Optim. Theory Appl., 2010, to appear) we present applications of these results to robust traffic network design and robust intensity modulated radiation therapy. © Springer Science+Business Media, LLC 2009.

Nyckelord: Sample average approximation; Solution stability and robustness; Stochastic mathematical program with equilibrium constraints; Weak Pareto optimality

Denna post skapades 2009-12-04. Senast ändrad 2016-07-19.
CPL Pubid: 102786


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Optimeringslära, systemteori

Chalmers infrastruktur