CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fixed points of holomorphic transformations of operator balls

M.I. Ostrovskii ; Victor Shulman ; Lyudmila Turowska (Institutionen för matematiska vetenskaper, matematik)
Quarterly Journal of Mathematics (0033-5606). Vol. 62 (2011), 1, p. 173-187 .
[Artikel, refereegranskad vetenskaplig]

A new technique for proving fixed-point theorems for families of holomorphic transformations of operator balls is developed. One of these theorems is used to show that a bounded group representation in a real or complex Hilbert space is orthogonalizable or unitarizable (that is similar to an orthogonal or unitary representation), respectively, provided the representation has an invariant indefinite quadratic form with finitely many negative squares.


arXiv:0902.1784



Denna post skapades 2009-12-01. Senast ändrad 2017-08-18.
CPL Pubid: 102519

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur