CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Transmutation kernels for the little q-Jacobi function transform

Hjalmar Rosengren (Institutionen för matematik) ; Erik Koelink
Rocky Mountain Journal of Mathematics Vol. 32 (2002), p. 703-738.
[Artikel, refereegranskad vetenskaplig]

The little q-Jacobi function transform depends on three parameters. An explicit expression as a sum of two very-well-poised 8W7-series is derived for the dual transmutation kernel (a kind of non-symmetric Poisson kernel) relating little q-Jacobi function transforms for different parameter sets. A product formula for the dual transmutation kernel is obtained. For the inverse transform the transmutation kernel is given as a 3phi2-series, and a product formula as a finite sum is derived. The transmutation kernel gives rise to intertwining operators for the second order hypergeometric q-difference operator, which generalise the intertwining operators arising from a Darboux factorisation.

Denna post skapades 2009-12-01. Senast ändrad 2014-09-29.
CPL Pubid: 102505


Institutioner (Chalmers)

Institutionen för matematik (2002-2004)



Chalmers infrastruktur