CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Comprehensive study of InAs/GaAs quantum dots by means of complementary methods

M Kaczmarczyk ; M Kaniewska ; Johan Piscator (Institutionen för mikroteknologi och nanovetenskap, Fysikalisk elektronik) ; Olof Engström (Institutionen för mikroteknologi och nanovetenskap, Fysikalisk elektronik) ; B Surma ; S Lin ; A R Peaker
Materials Science and Engineering B. 9th International Workshop on Expert Evaluation and Control Compound Semiconductor Materials and Technologies. Univ Lodz, Lodz, POLAND. JUN 01-06, 2008 (0921-5107). Vol. 165 (2009), 1-2, p. 98-102.
[Konferensbidrag, refereegranskat]

Structural, optical, and electronic properties of self-organized InAs/GaAs quantum dots (QDs) were studied by means of atomic force microscopy (AFM), photoluminescence measurements (PL), and deep level transient spectroscopy (DLTS). We found that a well defined group of QDs with low size dispersion as revealed by AFM maintains its properties in PL spectra even if the QDs are covered by GaAs. Two well separated emission lines attributed to the QD-related ground- and excited-state transitions. respectively are found in the PL spectra. Contrary to the optical picture of a characteristic simplicity, DLTS spectra are found with higher complexity. This is due to combined thermal/tunneling processes and multi-particle emission. Despite the relatively good understanding of optical and electrical properties of QDs in PL and DLTS, respectively, there are still discrepancies between electrical and optical data for the energy of the QD ground states, which need more investigations to be explained.

Nyckelord: Energy states in quantum dots; III-V semiconductors; Structural, optical and electrical properties; AFM; PL; DLTS

Denna post skapades 2009-11-06. Senast ändrad 2016-07-20.
CPL Pubid: 101356


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fysikalisk elektronik (2007-2010)


Teknisk fysik

Chalmers infrastruktur