CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Atomic decompositions and operators on Hardy spaces

Stefano Meda ; Peter Sjögren (Institutionen för matematiska vetenskaper, matematik) ; Maria Vallarino
Revista de la Union Matematica Argentina (0041-6932). Vol. 50 (2009), 2, p. 15-22.
[Artikel, refereegranskad vetenskaplig]

This paper is essentially the second author's lecture at a CIMPA-UNESCO School. It summarises large parts of the three authors' paper "On the H1 - L1 boundedness of operators". Only one proof is given. In the setting of a Euclidean space, we consider operators defined and uniformly bounded on atoms of a Hardy space Hp. The question discussed is whether such an operator must be bounded on Hp. This leads to a study of the difference between countable and finite atomic decompositions in Hardy spaces.

Nyckelord: Hardy spaces, atomic decompositions

Denna post skapades 2009-10-29. Senast ändrad 2017-07-03.
CPL Pubid: 101013


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Matematisk analys

Chalmers infrastruktur