### Skapa referens, olika format (klipp och klistra)

**Harvard**

Wärmefjord, K., Carlson, J. och Söderberg, R. (2009) *A Measure of the Information Loss for Inspection Point Reduction*.

** BibTeX **

@article{

Wärmefjord2009,

author={Wärmefjord, Kristina and Carlson, Johan S and Söderberg, Rikard},

title={A Measure of the Information Loss for Inspection Point Reduction},

journal={Journal of Manufacturing Science Engineering},

issn={1087-1357},

volume={131},

issue={5},

abstract={Since the vehicle program in the automotive industry gets more and more extensive, the costs related to inspection increase. Therefore, there are needs for more effective inspection preparation. In many situations, a large number of inspection points are measured, despite the fact that only a small subset of points is needed. A method, based on cluster analysis, for identifying redundant inspection points has earlier been successfully tested on industrial cases. Cluster analysis is used for grouping the variables into clusters, where the points in each cluster are highly correlated. From every cluster only one representing point is selected for inspection. In this paper the method is further developed, and multiple linear regression is used for evaluating how much of the information is lost when discarding an inspection point. The information loss can be quantified using an efficiency measure based on linear multiple regression, where the part of the variation in the discarded variables that can be explained by the remaining variables is calculated. This measure can be illustrated graphically and that helps to decide how many clusters that should be formed, i.e., how many inspection points that can be discarded. },

year={2009},

keywords={inspection, cluster analysis, variable reduction, regression, information loss},

}

** RefWorks **

RT Journal Article

SR Electronic

ID 100441

A1 Wärmefjord, Kristina

A1 Carlson, Johan S

A1 Söderberg, Rikard

T1 A Measure of the Information Loss for Inspection Point Reduction

YR 2009

JF Journal of Manufacturing Science Engineering

SN 1087-1357

VO 131

IS 5

AB Since the vehicle program in the automotive industry gets more and more extensive, the costs related to inspection increase. Therefore, there are needs for more effective inspection preparation. In many situations, a large number of inspection points are measured, despite the fact that only a small subset of points is needed. A method, based on cluster analysis, for identifying redundant inspection points has earlier been successfully tested on industrial cases. Cluster analysis is used for grouping the variables into clusters, where the points in each cluster are highly correlated. From every cluster only one representing point is selected for inspection. In this paper the method is further developed, and multiple linear regression is used for evaluating how much of the information is lost when discarding an inspection point. The information loss can be quantified using an efficiency measure based on linear multiple regression, where the part of the variation in the discarded variables that can be explained by the remaining variables is calculated. This measure can be illustrated graphically and that helps to decide how many clusters that should be formed, i.e., how many inspection points that can be discarded.

LA eng

DO 10.1115/1.4000105

LK http://dx.doi.org/10.1115/1.4000105

OL 30